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ABSTRACT: The use of noncovalent interactions to
direct transition-metal catalysis is a potentially powerful
yet relatively underexplored strategy, with most inves-
tigations thus far focusing on using hydrogen bonds as the
controlling element. We have developed an ion pair-
directed approach to controlling regioselectivity in the
iridium-catalyzed borylation of two classes of aromatic
quaternary ammonium salts, leading to versatile meta-
borylated products. By examining a range of substituted
substrates, this provides complex, functionalized aromatic
scaffolds amenable to rapid diversification and more
broadly demonstrates the viability of ion-pairing for
control of regiochemistry in transition-metal catalysis.

he use of noncovalent interactions to direct transition-

metal catalysis is a potentially powerful yet relatively
underexplored strategy, particularly for addressing issues of
regioselectivity in synthetic chemistry. Alongside hydrogen
bonds, ion-pairing interactions have emerged as a powerful tool
for control of enantioselectivity,’ but an equally important
aspect in which careful control is required is regioselectivity.
Important advances have demonstrated that multiple hydrogen
bonds are able to provide precise molecular recognition in
particular situations,” delivering regioselectivity in reactions
such as site-selective oxygenation of sp> C—H bonds,’
regioselective hydroformylation of unsaturated carboxylic
acids,* and most recently, regloselectlve arene borylatlon,
among others (Chart 1, eq 1).° In contrast to this, ion-pairing
interactions have not been explored in the context of addressing
regioselectivity challenges. If, however, a single electrostatic
interaction could be successfully employed to position a
reactive metal center via dynamic ion exchange, this could
help to reduce the need for a synthetically elaborate “receptor”
portion of the catalyst, potentially increasing both practicality
and generality (Chart 1, eq 2). It is possible that the perceived
lack of directionality of ion pairs when compared with single
and particularly multiple hydrogen bonds has inhibited their
investigation thus far. Here, we demonstrate ion-pairing to be a
viable approach to address issues of regiocontrol in the iridium-
catalyzed borylation of aromatic C—H bonds.

Arguably the most common problem of regioselectivity is
encountered in functionalization of arenes, making this an ideal
forum to test our ion-pairing approach. Iridium-catalyzed C—H
borylation stands apart in that regioselectivity is largely
controlled by sterics, as opposed to electronics or proximity.’
Consequently, it is very powerful for functionalization of 1,3-
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disubstituted arenes. However, monosubstituted or 1,2-
disubstituted arenes generally give inseparable mixtures of
isomers (Chart 1, eq 3), unless a particular substituent can
direct either ortho®*® or meta,” or a bulky ligand favor para.'”"’
In particular, accessing the meta position is desirable due to the
relative paucity of methods to access this position, despite
recent interest.””'> To address this, we sought to investigate
cationic arene substrates in iridium-catalyzed borylation,
anticipating that the charged center would be able to ion pair
with an anionic bifunctional ligand (Chart 1, eq 4). Quaternary
ammonium salts are readily accessed, and many methods exist
for their elaboration in sp* sp® and heteroatom cross
coupling,13 reduction,"* conversion to boronate esters,md’15
partners for C—H activation,'® displacement with *F,'” and
[1,2] and [2,3] rearrangement chemistry'® among others. In
approaching the design of a suitable ion-pairing ligand, we
began by elaborating an example of the basic transition state for
iridium-catalyzed borylation, as calculated by Singleton,
Maleczka, Smith et al.?"’ By modifying the structure to
append a sulfonate-bearing tether onto the bipyridine back-
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bone, a productive ion-pairing interaction appears plausible
with a quaternized benzylamine substrate undergoing C—H
oxidative addition at the meta-position. On alkylammonium
salts, the positive charge is spread over the methyl/methylene
units directly adjacent to the nitrogen,” and thus it is possible
that less conventional interactions such as C—H—O hydrogen
bonds could provide directionality at close proximity.”' We
synthesized anionic bipyridine ligand L1 in only two steps from
inexpensive, commercial material.”> Using quaternized 2-
chlorobenzylamine (1a) as a test substrate, conventional ligand
dtbpy gave poor levels of selectivity in both THF and
cyclohexane (Table 1, entries 1 and 2), although in THF, a

Table 1. Evaluation of Ligands on Substrate 1a

— —  SO; NBu, ~S0; NBu,
\ ¢ NZ ™=t TN TN n=1L3
n=2 12 N7\ n

MesN'_ OTS  15%[I(COD)OMe], MesN"_ OTS  Me,;N"_ OTs
3% Ligand
cl 1.5 equiv. BoPin, R R
Solvent, :
1a T°C.20h Fme meta para BPin
entry solvent ligand T conv.” meta:para”
1 cyclohexane dtbpy 50 24 L1:1
2 THF dtbpy 50 98 124
3 THEF L1 S0 96 10:1
4 THF L2 S0 100 3.5:1
N THE L3 S0 100 1.8:1
6 THF L4 S0 100 1.1:1
7 cyclohexane L1 70 <5 -

“Determined by 'H NMR analysis with reference to an internal
standard.

small preference for the para position was observed. Pleasingly,
using L1 instead of dtbpy gave 10:1 selectivity for the meta
position (entry 3). A ligand with a longer linker (L2) and
isomers where the linker extends from the 4-position (L3 and
L4) all gave poorer selectivity (entries 4 to 6), and L1 gave very
low conversion in cyclohexane, even at 70 °C (entry 7).
Control experiments with two neutral surrogates for la gave
poor selectivity with L1, demonstrating the importance of the
positive charge on the substrate and supporting the ion pairing
hypothesis (eq 5).”* Also, the addition of varying amounts of

Cationic Substrate Neutral Substrates——

Outcome of
borylation

SN /l!l
Ej/m ED/CI cl (9
THF:

using L1 in
mp=10:1 mp=1:1 mp=1:1

Bu,NOTs to the borylation of la using L1 led to some
decrease in the meta-selectivity, potentially due to the excess
Bu,N" displacing the substrate as ligand counterion and a
subsequent increase in nondirected borylation.*”

With regard to scope of the transformation (Scheme 1), a
variety of substituents are tolerated in the ortho position
including halogens (2a—2c), electron-withdrawing (2d and 2e)
and electron-donating (2f and 2g) groups. A Boc-protected
amine is also compatible (2h). Meta-fluoro substrate 2i gives
high selectivity with L1, and an ortho-fluoro results in
diborylation via initial borylation at the S-position (2j).

Scheme 1. Substrate Scope for Ion Pair-Directed Borylation
of Quaternized Benzylamine Derivatives”
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Me;N- OTs
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2i
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Me3N‘ OTs
a F F
PinB BPin

L1, THF: 7:1 (90%)
dtbpy, THF: 1.7:1 (82%)

“Typically: Substrate (0.25 mmol), B,Pin, (0.375 mmol), [Ir(COD)-
OMe], (1.5 mol %), ligand (3 mol %), solvent (0.2 M), S0—70 °C
(see SI for details). Yields shown are isolated except where shown in
parentheses (NMR yields with reference to internal standard).
Isomeric ratios are meta:para taken from analysis of crude '"H NMR
spectra.

Substrates 2k and 2l demonstrate that our ion-pairing ligand
is able to “reach past” ortho-fluoro substituents in both cases to
impart high selectivity in the first borylation. Indeed, in 21
borylation occurs preferentially adjacent to the fluorine (meta)
rather than in the less hindered para-position. In all cases, poor
selectivity was observed with standard borylation ligand dtbpy.
The products were isolated by precipitation from ether, except
in several cases where the products decomposed upon
isolation; in these few cases, yields were determined by NMR
with reference to an internal standard.

We next investigated whether aniline-derived quaternary
ammonium salts may exhibit similar trends (Scheme 2). While
we were concerned that moving the arene one carbon closer to
the ammonium group could disrupt the selectivity, basic
modeling suggested that this substrate class also looked viable
according to our hypothesis, since there are a number of
different ways in which the cationic substrate and anionic ligand
can plausibly associate. In the event, anionic ligand L1 again
proved to be a powerful meta-director and provided good to
excellent selectivity in most cases, far superior to analogues
L2-L4.”> As before, the scope was found to be broad with
respect to functionality tolerated with electron-withdrawing
(4a—4c), -donating (4d—4f), halogens (4a), and aromatic
groups (4g).23 Heterocyclic substrates (4h and 4i) had a
propensity for diborylation due to the reduced steric demand of
the aliphatic ring, although 4h could be stopped at the mono.
Several fluorine-containing substrates underwent selective
borylation using L1 (4j and 4k). Furthermore, borylation to
give 4a could be carried out efficiently on gram scale. We also
investigated aromatic heterocyclic substrates (Scheme 3). 2-

DOI: 10.1021/jacs.6b08164
J. Am. Chem. Soc. 2016, 138, 12759—-12762


http://pubs.acs.org/doi/suppl/10.1021/jacs.6b08164/suppl_file/ja6b08164_si_002.pdf
http://dx.doi.org/10.1021/jacs.6b08164

Journal of the American Chemical Society

Communication

Scheme 2. Substrate Scope for Ion Pair-Directed Borylation
of Quaternized Aniline Derivatives
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Scheme 3. Borylation of Aromatic Heterocycles
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Substituted pyridines generally give mixtures upon borylation
and with dtbpy pyridyl ammonium salts Sa and Sb gave
nonselective 5- and 4,6—diborylation.24 In the latter case,
borylation at C4 occurs initially but is followed by a facile
second borylation at C6.”*" Using L1 in both cases leads to
very high selectivity for the 4,6-diborylated product, indicating
high levels of regiocontrol over C4 vs CS borylation. Free NH
indoles are established to undergo initial borylation at the 2-
position, followed by a second directed borylation at the C7
position due to a directing effect of the N-heteroatom.”**** On
substrate Sc, the 2,7 diborylated isomer was the predominant
product with dtbpy. Despite the innate substrate direction to
C7, L1 was able to significantly affect the regiochemical
outcome, and roughly equal amounts of C2,6 and C2,7
diborylated isomers were obtained.

We examined a selection of derivatives without arene
substituents, which resulted in symmetrical diborylation with

12761

>20:1 selectivity in all cases using L1 (Scheme 4).”° As well as
unsubstituted versions of earlier substrates (2m and 41), this

Scheme 4. Diborylation of Unsubstituted Arenes
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cr
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Hyamine® 1622
(Benzthionium Chloride)

Topical antimicrobial agent
BPin

includes a substrate quaternized with butyl groups (2n),
benzylammonium salts with a-substitution (20 and 2p), and a
glycine-derived ammonium salt (2q). We also demonstrate
application to the meta-selective diborylation of the antimicro-
bial surfactant benzthionium chloride (2r).

To demonstrate the utility of our products, which contain up
to three orthogonal handles for cross-coupling, we carried out a
borylation/Suzuki coupling of 1a and used this as the basis for
two subsequent palladium-catalyzed cross couplings in an
iterative manner (Scheme $5). Notably, we discovered that in

Scheme 5. Application to Iterative Cross-Coupling

+ 9 lon pair + 2
OTs p
MesN directed MeNO™S  pyoag, R OMe
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then O ArB(OH),
ArBr 74%
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CO,Et
Pd(OAc), Pd(OAc),
XantPhos Cl XPhos
ArB(OH), O ArB(OH),

73% 10

7%

compound 8, the ammonium functionality can be selectively
coupled with a boronic acid in the presence of the chloride,
using Pd(OAc),/Xantphos (8 to 10). Conversely, using XPhos
selectively couples the chloride and leaves the ammonium
untouched (8 to 9). This ligand-controlled chemoselectivity
using palladium catalysis is significant, as previously only nickel
catalysis has been used in coupling of benzyl ammonium salts
with boronic acids, a protocol not tolerant of halide
functionality, limiting application to sequential couplings.13f
This discovery, together with the extensive cross-coupling
literature," provides ample opportunity for rapid diversification
of the versatile aromatic structures accessible using this ligand-
directed approach to borylation. Furthermore, the ammonium
handle can be readily cleaved by hydrogenation, if desired (9 to
12).
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We have developed a readily accessed, anionic ligand that
engages in a substrate—catalyst ion-pairing interaction to enable
meta-selective borylation of two distinct classes of aromatic
quaternary ammonium salts. The use of noncovalent
interactions to control regioselectivity in transition-metal
catalysis is an area of great potential. This study demonstrates
the viability of ion-pairing as a powerful tool for the
development of new regioselective transformations.
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